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Abstract— We propose an accurate and robust
inter-vehicle distance estimation method using high-
speed stereo vision. The framework involves two
phases: a tracking phase, wherein a preceding vehicle
is accurately and stably tracked by a tracking algo-
rithm optimized for stereo high-speed vision, and a
distance estimation phase, wherein the inter-vehicle
distance is estimated via a highly accurate scale es-
timation and aggregation method for multiple scale-
based distance estimations to ensure that it is more
accurate and robust without introducing a delay. Fur-
ther, we propose patch multiplexing to realize accu-
rate and efficient aggregation even in situations where
the scale changes rapidly (e.g., emergency braking).
Through comparative analysis using three real-world
scenarios, we verify that the accuracy of inter-vehicle
distance estimation using our approach is comparable
to that of laser rangefinders. We also demonstrate that
differential quantities, such as velocity and accelera-
tion, could be accurately estimated using an adaptive
Kalman filter. Our results will help develop safe and
accurate truck platooning and adaptive cruise control
systems.

I. INTRODUCTION

In this study, we investigated the implications of high-
speed cameras on intelligent vehicles. Cameras are a cru-
cial sensor in autonomous driving and advanced driver-
assistance systems; they help in following preceding ve-
hicles, truck platooning, and lane keeping assist systems.
Millimeter-wave radars and 3D LiDARs are generally
employed for distance estimation in truck platooning
owing to their high accuracy and robustness against
environmental disturbances. However, these are bulky
and expensive techniques, and the amount of information
retrieved is limited. Thus, cameras are generally used in
combination with radars and LiDARs [1]. To enhance
the capability of a camera, hardware components such
as short-wavelength infrared cameras have been actively
developed to overcome the vulnerabilities of cameras to
weather conditions. In such systems, an accurate and
robust camera-based inter-vehicle distance estimation
method is desired. Furthermore, highly accurate esti-
mation of velocity and acceleration is required for ad-
vanced adaptive cruise control. Accordingly, significant
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Fig. 1. On-board high-speed stereo vision system for truck pla-
tooning.

research has been conducted to improve the accuracy
of estimation. In this study, we hypothesize that high-
speed cameras can solve these issues and propose a highly
accurate and robust method of inter-vehicle distance
estimation using high-speed stereo vision, as illustrated
in Fig. 1.

To measure the inter-vehicle distance using a stereo
camera pair, it is necessary to accurately track the
preceding vehicle with both cameras. However, sudden
changes in the position of the preceding vehicle in cam-
era images due to vibration or emergency braking can
lead to inaccurate tracking and failure in establishing
correspondence between the left and right cameras. We
used a high-speed stereo vision system to alleviate such
vibrations because it acquires images in short time in-
tervals, which reduces the image motion between frames.
The proposed method tracks preceding vehicles using the
high-speed stereo vision system by alternately applying
correlation filters to the left and right cameras with
several customizations.

Our method can estimate distance via triangulation;
however, it is not robust against estimation failures and
not accurate enough to precisely estimate the velocity
and acceleration. We address this issue by leveraging
multiple distance estimation methods. A simple moving
average for multiple estimation results is often used in
such cases, but it causes non-negligible delay. Thus, we
used a high-precision real-time scale estimation method
based on the triangulated distance estimations of pre-
vious frames and performed aggregation without intro-
ducing delay. We also propose a method of multiplexing



patches used for scale estimation to ensure accuracy
even in situations where the scale changes rapidly, such
as emergency braking. Through comparative analysis
against a high-speed laser rangefinder (LRF), we vali-
dated the proposed method in various real-world high-
way scenarios, such as typical vehicle following, sudden
throttle, braking, and intensive vibration.

The main contributions of this work can be summa-
rized as follows.

• We proposed to aggregate multiple distance estima-
tions without introducing delay via accurate scaling
and patch multiplexing for efficient and stable ag-
gregation.

• We built a stereo high-speed vision system, validated
the proposed method via on-road experiments, and
demonstrated that the accuracy of estimating the
distance, velocity, and acceleration was comparable
to that of LRFs.

II. RELATED WORK
A. Tracking

Object tracking has attracted significant research in-
terest in computer vision. Two primary approaches em-
ployed include correlation filter-based and deep learning-
based methods. Correlation filter-based methods (e.g.,
MOSSE [2] and KCF [3]) track objects by continuously
updating filters that output object locations by multiply-
ing to the input images in the frequency domain. Recent
deep learning-based approaches (e.g., SiamRPN [4] and
DaSiamRPN [5]) utilize the Siamese network architec-
ture, in which the same network is applied to both the
input and target images, and the resulting feature maps
are correlated to estimate object locations. Correlation
filters learn the appearance of objects online and they
are fast. This motivates us to optimize these filters for
high-speed stereo vision to accurately and robustly track
preceding vehicles.

B. Distance Estimation
Computer vision-based inter-vehicle distance estima-

tion methods can be categorized into two groups, i.e.,
monocular and stereo. Several cost-effective monocular
vision systems have recently been proposed. In [6], an
accurate depth prediction method was proposed for dy-
namic scenarios, such as getting surrounded by moving
vehicles. As a more vehicle-oriented method, a recent
work [7] proposed a light-weight depth and motion
estimation method that directly regresses the vehicle
velocity from the corresponding trajectories using a mul-
tilayer perceptron. End-to-end learning has also been em-
ployed [8], [9] to improve the robustness and estimation
accuracy. However, it has been shown that the difference
between monocular and stereo depth estimation accuracy
is significant [10] owing to scale ambiguity, which is a
fundamental limitation of monocular vision.

Some stereo-based methods extract visual cues, such
as edge information [11], LED [12], and UV disparity
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Fig. 2. Outline of alternating MOSSE for preceding vehicle
tracking. The same correlation filter is alternately applied to high-
speed stereo image sequences.

maps [13], but they only use one pair of images for dis-
tance estimation. Thus, the sequential time information
is not well-utilized. By leveraging stable and accurate
high-speed vision tracking, we propose a novel multiple
aggregation architecture to significantly improve the es-
timation accuracy.

III. ALTERNATING MOSSE FOR STEREO
HIGH-SPEED VISUAL TRACKING

A. Preceding Vehicle Identification
The first step in our method involves identifying

the preceding vehicle with both cameras to estimate
the distance accurately. Objects are recognized by deep
learning-based object recognition methods, which pro-
vide the object location and labels. We employed the
YOLOv3 [14] object recognition algorithm, wherein ob-
ject locations are represented as bounding boxes enclos-
ing objects. We assume that the preceding vehicle and
ego-vehicle run in the same lane in the beginning of the
estimation. Thus, in the first frames of both cameras, we
identify a bounding box as the preceding vehicle whose
center is located in the middle of the current lane.

B. Alternating MOSSE
1) MOSSE: Here, we briefly discuss the minimum

output sum of squared error (MOSSE) filter [2]. MOSSE
constructs correlation filters to track objects; it is de-
signed to generate 2D Gaussian maps with peaks indi-
cating object locations in images. One of the advantages
of MOSSE is that it is computationally inexpensive. It
learns the appearance of target online by updating the
filter with a constant learning rate; thus, it is robust to
changes in the appearance.

2) Alternating MOSSE for high-speed stereo vision:
Based on MOSSE, we adopted a tracking method called
“alternating MOSSE (A-MOSSE),” tailored for high-
speed stereo vision (originally proposed in [15]). Fig. 2
shows an overview of the method. Three major changes
were implemented, as listed below:

Filter sharing: The same MOSSE filter is applied to
images from both cameras and updated alternately while



developing the bounding box of each camera indepen-
dently. This technique enables long-term robust stereo
tracking because it preserves consistency between the
bounding boxes of both cameras.

Bounding box scaling: The preceding vehicle is
identified as a bounding box for each camera. After de-
termining the geometric configuration of the camera, the
centers of both bounding boxes can be triangulated to
estimate the approximate inter-vehicle distance. The size
of the bounding box is continuously scaled in response to
the inter-vehicle distance. The portion of the preceding
vehicle occupied in the bounding box is kept constant,
thus ensuring robustness of tracking against varying
distance ranges. To avoid additional computations due
to scaling, we resize the image within the bounding box
to a fixed size.

Learning rate adjustment: Because we use a high-
speed camera, the changes in appearance of the tracking
target are minimal in a short time interval between frame
acquisition. We set a low value for the filter learning rate,
η, which suppresses drift in tracking. In our experiments,
we set the learning rate, η, to be 0.0004 for 500 [fps],
whereas η is typically set to 0.02 for 30 [fps].

3) Bootstrapping: The bounding boxes in both cam-
eras are not always well aligned when tracking starts
because each bounding box is set independently. To sup-
press the initialization error induced by the misalignment
in registration and improve robustness, we modified A-
MOSSE to run twice for the first image pair.

IV. MULTIPLE SCALE AGGREGATION
WITH PATCH MULTIPLEXING

A. Overview
We propose multiple scale aggregation to improve the

estimation accuracy; in this approach, multiple distance
estimations are aggregated via statistical treatment for
robustness against outliers. Because a change in the
apparent size (scale) of the preceding vehicle encodes a
change in the inter-vehicle distance, the distance can be
calculated through distance estimation via triangulation
for a previously acquired frame pair and the scale change
of the preceding vehicle between the previous and current
frames. The scale change can be computed using a pair
of square patches generated from bounding boxes. Here,
the frame containing the reference patch for calculating
the scale is called a keyframe. We propose to aggregate
multiple distance estimations by scaling to improve the
accuracy and robustness. We further propose to multi-
plex patches of different sizes at the keyframes to perform
aggregation more effectively even when the patch size of
the current frame dynamically changes. The estimated
inter-vehicle distance is highly accurate to estimate the
velocity and acceleration using an adaptive cubic Kalman
filter.

This architecture enables asynchronous processing, in
which the processing for each keyframe is completed
before estimation. This reduces the computational cost

in real-time processing. We discuss each key component
in the following sections.

B. Scale Estimation
The inter-vehicle distance, d̃, is computed using the

scale change, s, of the preceding vehicle from an arbitrary
keyframe to the current frame as follows:

d̃ = d/s, (1)

where d is the distance obtained by triangulation at the
keyframe containing the reference patch.

Running vehicles inevitably suffer from vibrations due
to irregularities in the road surface and engine opera-
tion. Such vibrations result in translational motion on
images. The power spectra for each image are calculated
to remove the effect of this translation. Subsequently,
the scale change is converted to the translation of the
image by applying the Fourier-Mellin transform [16]. It
is calculated with significantly high accuracy using the
phase-only correlation (POC) method [17], in which the
normalized cross spectrum of two images is calculated
by eliminating amplitudes and focusing on the phase
component through discrete Fourier transform (DFT).
The inverse Fourier transform of the normalized cross
spectrum exhibits a distinct peak corresponding to the
scale change. We used the windowing technique [17] to
mitigate the effect of discontinuities around boundaries
for better estimation. In addition, we can ignore the
inverse Fourier transform on pixels at a significant dis-
tance from the peak location because the scale change is
approximate, resulting in the reduction of computational
cost.

POC involves DFT; to perform DFT efficiently, a
square patch enclosing the bounding box is set. Let
nbX × nbY be the size of the bounding box. Then, the
patch size, np, is given by

np = min {n|n ∈ Nd, n ≥ nbX , n ≥ nbY } , (2)

where Nd = {ndi |i = 1, 2, . . .} is a predetermined set of
optimal DFT sizes. The center of the patch corresponds
to that of the bounding box.

Because the scale calculated by this method and A-
MOSSE is robust against vibrations, the calculated inter-
vehicle distance is also robust against vibrations.

C. Multiple Scale Aggregation
Because scale estimation by the aforementioned

method may fail owning to sudden changes in lighting,
distance estimation by a single keyframe lacks reliability.
To address this issue and reduce variance (noise) in
a single estimation, we aggregate the distances by the
scaling calculated for multiple keyframes via statistical
treatment to obtain a more robust and accurate esti-
mation. This aggregation does not introduce phase lag
because all distance estimations are based on the same
moment.
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Fig. 3. Multiple scale aggregation. Distance estimation at current
time, tc, is derived by an aggregation of multiple scale-based
distance estimations.

Let M be the patch size in the current frame and K
be the set of keyframes with a patch size of M . Let dkj

be the distance estimation by triangulation at keyframe
kj ∈ K and skj be the scale obtained from the patch in
kj and that in the current frame. We obtain a distance
estimation, d̃kj = dkj/skj , for each keyframe, as shown
in Fig. 3.

To reject outliers differing by more than 10% in {d̃kj
},

results that are significantly different from the distances
predicted by the Kalman filter (Section IV-E) are re-
jected. Then, we obtain a set of keyframes, I, associated
with the inliers. The estimated distance by multiple scale
aggregation, d̃, is

d̃ =
1

N (I)

∑
kj∈I

dkj

skj

, (3)

where N (I) is the number of estimations in I.
However, calculating the distances for multiple

keyframes using the aforementioned method is compu-
tationally expensive. Therefore, we preprocess a part of
scale estimation with keyframes in advance. Specifically,
when a keyframe is selected, we preprocess an image re-
tained after applying the Fourier-Mellin transform to the
power spectrum of the patches, and then apply the DFT.
This preprocessing for keyframe patches is conducted
asynchronously and they are aggregated immediately
after processing. It should be noted that the aggregation
is highly parallelizable because each scale computation
can be calculated independently, thus making the com-
putation more efficient.

D. Patch Multiplexing
In the method discussed previously, scale aggregation

can be conducted only for keyframe patches with the
same size as that of the patch in the current frame.
However, if the patch size in the current frame changes
owing to the preceding vehicle approaching or leaving,
a risk may arise wherein few keyframes may attain the
same patch size, thereby limiting the effect of scale aggre-
gation. Therefore, we multiplex patches one size larger
and smaller for each keyframe based on the reference
patch.

Patch size

Time

Fig. 4. Multiple scale aggregation with patch multiplexing. The
curve denotes the size of the bounding box. The current frame is
indicated by △ and the current patch is indicated by ◦. The black
circles, •, represent the patches created in patch multiplexing at
keyframes ▲, and patches marked by □ are aggregated for distance
estimation at tc.

Fig. 4 summarizes multiple scale aggregation with
patch multiplexing. For a keyframe at time tkj , three
patches with different sizes, Ndi

, Ndi+1
, and Ndi+2

, are
prepared, where Ndi+1

is the reference patch size. We as-
sume that in the current frame at time tc, a patch of size
Ndi+2

is calculated. Owing to patch multiplexing, patches
with size Ndi+2 at the keyframes can be aggregated even
if the reference patches in the keyframes are different.

This method ensures that keyframes can be used
for aggregation, even when the inter-vehicle distance
changes. Although this multiplexing increases the com-
putation time required for the keyframes, it does not
affect the throughput performance. This is because
keyframe processing can be executed asynchronously. In
addition, the scale estimation method introduced in the
previous section loses accuracy when the scale exceeds
a certain value, but multiplexing avoids this problem
by ensuring that patch pairs with significantly different
scales are rejected.

E. Filtering
The relative velocity and acceleration are estimated

from the inter-vehicle distance using a cubic Kalman
filter [18]. Let xk be the distance estimated at time k and
dt be the frame acquisition interval. The cubic Kalman
filter is then formulated as xk

ẋk

ẍk

=

 1 dt dt2/2
0 1 dt
0 0 1

 xk−1

ẋk−1

ẍk−1

+
 dt3/6

dt2/2
dt

wk,

(4)

zk = xk + vk, (5)

where the process noise, wk, and observation noise, vk,
follow the Gaussian distributions, wk ∼ N (0, Q) and
vk ∼ N (0, R), respectively. The covariance matrix Q is
modeled as

Q = q

 dt5/20 dt4/8 dt3/6
dt4/8 dt3/3 dt2/2
dt3/6 dt2/2 dt

 . (6)
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Fig. 5. System setup.

Because the distance estimation accuracy is inversely
proportional to the inter-vehicle distance, the covariance
of the observation noise, R, depends quadratically on the
estimated distance, d̃:

R =


Rmin dmin ≤ d̃
Rmax−Rmin
(dmax−dmin)2

(d̃− dmin)
2 +Rmin dmin ≤ d̃ ≤ dmax

Rmax dmax ≤ d̃,
(7)

where Rmin and Rmax are the lower and upper limits of R,
respectively. R is clipped between a minimum distance,
dmin, and maximum distance, dmax.

V. EVALUATION
A. Experimental Setup

Because our method is based on high-speed cameras,
the proposed model cannot be evaluated on datasets with
standard frame rate videos. Therefore, we constructed a
dedicated experimental setup and collected data for eval-
uation. Fig. 5 shows the experimental setup. We used two
industrial high-speed cameras, acA800-510uc, manufac-
tured by Basler Inc. (resolution: 800×600 px, frame rate:
500 fps) with a wide lens (F1.8/6 mm). These cameras
were synchronized and mounted in alignment with both
optical axes parallel to the vehicle rooftop (height: 2060
mm, baseline: 550 mm). They were carefully calibrated
using MATLAB’s computer vision toolbox. The pitch
and roll angles were 4.6◦ and 1.3◦, respectively. For
a comparative study, we mounted an LRF, LDM71,
manufactured by JENOPTIK AG (precision: 20 cm at
20 m, frequency: 500 Hz, max: 270 m) with the cameras.
The LRF was attached 95 mm ahead of the camera image
plane.

We set keyframes every 0.05 s and the maximum num-
ber of scale aggregation was 100, implying that keyframes
set at time t were disregarded from aggregation after time
t+5. This also indicates that multiple scale aggregation
is fully set after 5 s. We compared the proposed sys-
tem with the LRF. The cubic Kalman filter presented
in IV-E was applied for distance estimation using the
proposed system and LRF to compare the velocity and

acceleration. In the experiments, we set Rmin = 106,
Rmax = 108, dmin = 15, and dmax = 120. Additionally,
we set q = 107; an offline finite impulse response (FIR)
differentiator filter was applied to LRF measurements to
determine lag-free velocity and acceleration estimation.
To compare our estimation x(t) with y(t) corresponding
to the LRF, we evaluated the mean absolute error (MAE)
as follows:

MAE =
1

T

T∑
t=1

|x(t)− y(t)|. (8)

All calculations were executed on an Ubuntu computer
with Intel® Xeon® processor (6 cores, 2 CPU, 3.4 GHz)
and 48 GB RAM. We used OpenMP® for parallelization.

We conducted experiments in three different highway
scenarios; the results are presented in the supplemental
video.

B. Evaluated Scenarios and Results

1) Approaching and leaving at curve: We conducted an
experiment considering truck platooning on a highway.
We recorded a scene of a truck slowly approaching and
leaving from the ego-vehicle, while maintaining an almost
constant distance for approximately 40 s. In the first part
of the scene, the car moves straight, then enters a curve
toward the middle of the scene. The tracking result is
shown in Fig. 6-(a). After the preceding truck enters the
lane 20 m ahead of the ego-vehicle from the neighboring
lane, tracking was considered accurate and successful,
even though the preceding truck steered left and right
in the lane and tilted slightly to the right in the middle
of the curve.

Compared with the LRF, the proposed method es-
timates the distance, velocity, and acceleration with
high accuracy, as shown in Fig. 7 (detailed analysis can
be found in Section V-B.4). Before completely setting
multiple scale aggregation at 5 s, the estimations were
not sufficiently accurate. Note that the proposed method
measures the distance from the camera to the vehicle
center, whereas LRF measures the distance from the
laser source to the illuminated point. This leads to a
small difference between the two estimations.

In addition, Fig. 8 shows the comparison between
the case where the triangulation by A-MOSSE is di-
rectly used as the distance measurement result and that
where multiple scale aggregation is used to improve the
accuracy. Because distance estimation by triangulation
involved more noise compared to that with multiple scale
aggregation, the velocity and acceleration estimated by
triangulation were significantly noisier. This is because
it is difficult to estimate the velocity and acceleration
accurately if distance estimation is not highly accurate
because these are differential values. This shows that the
proposed multiple scale aggregation method significantly
improves the estimation accuracy.
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Fig. 6. Tracking results of (a) approaching and leaving, (b) sudden throttle and braking, and (c) intensive vibration. The red rectangle
denotes the bounding box in tracking using A-MOSSE. The bounding box is labeled with the estimated distance. The relative velocity
and acceleration are shown at the bottom left and right, respectively. All results can be found in the supplemental video.
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Fig. 7. Estimated results for “approaching and leaving.”

2) Sudden throttle and braking: Another experiment
was conducted in a scene where the vehicle first accel-
erated and braked sharply to a stop (Fig. 6-(b)). We
started recording the 13 s-scene when the distance to
the stationary truck in the sight exceeded 120 m, and
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Fig. 8. Estimated results with and without multiple scale aggre-
gation.

stopped when the distance approached 12 m in approxi-
mately 10 s. Although the position of the preceding truck
changed significantly in the image owing to the up and
down motion of the ego-vehicle when accelerating and
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Fig. 9. Estimated results for “sudden throttle and braking.”

braking, accurate vehicle tracking was realized.
The advantage of high-speed vision is demonstrated

when the tracked object moves significantly in the image
in a short period. We compared the time of continuous
successful tracking with a simulated low frame rate
camera by thinning out the frames in the same scene
(Table I). When the frame rate was less than 80 FPS,
tracking failed at an early stage. However, continuous
tracking was successful when the frame rate was higher
than 100 FPS. In real-world scenarios, the effect of ve-
hicular vibration on the measurement using the onboard
camera is significant. This result shows the importance
of using a high-speed camera as an onboard camera.

Fig. 9 shows the estimation results for this scene.
Owing to patch multiplexing, multiple scale aggregation
can be beneficial even when the inter-vehicle distance
dynamically changes. The proposed method could es-
timate the distance in all ranges; however, the LRF
failed to measure the distance because it was difficult
to continuously irradiate the laser on the truck owing to
car movements. This is also observed in LiDAR, which
makes it difficult to dynamically track targets.

Because LRF could measure the distance after 8 s,
we compared the estimated values during that period.
A systematic error was observed in distance estimation;
however, this effect was limited for the velocity and

TABLE I
Tracking suspended time in different frame rates (FPS).

The faster the FPS, the more stable the tracking.

Frame rate [fps] 50 60 80 100 250 500
Time [s] 0.46 2.38 1.32 13.0 13.0 13.0
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Fig. 10. Estimated results for “intensive vibration.”

acceleration. This result demonstrates that the proposed
method is effective for emergency brake assist.

3) Intensive vibration with slope: We conducted a
third experiment on a highway where the preceding and
ego-vehicles were vibrating intensively owing to irregu-
larities in the road (Fig. 6-(c)). The road was levelled,
but an incline was introduced toward the middle of the
scene. Even though the vehicles were vibrating and the
slope was changing in the middle of the scene, stable
tracking was realized.

The estimated result is presented in Fig. 10. Although
the image exhibits severe vibration, we estimated the
distance with an accuracy of less than 50 cm at a
distance of 30 m including systematic errors, compared
to LRF. However, the distance estimation result changed
relatively steeply around the 9 s mark when the vehicle
entered the uphill slope; moreover, a large difference in
velocity and acceleration was observed in comparison
to LRF measurements. At this instance, the vehicle ap-
proached the uphill slope. This suggests that the changes
in vehicle posture with respect to road surface caused by
the vehicle entering the uphill slope may have influenced
the results, which is an issue to be addressed in future
studies.

4) Parameter Study: We examined the estimation re-
sults for different numbers of patches in multiple scale
aggregation. We used the approaching and leaving data
described in Section V-B.1 for evaluation. The num-
ber of patches affects the accuracy of estimation and
computation time. The estimation results for different
numbers of patches (2, 20, and 100) are shown in Fig. 11.
The computation time was 4.7 and 9.96 ms when the
number of patches was 2 and 100, respectively. The
computation was aided by parallelization in aggregation.
Because a large portion of computation involves DFT, we
can further reduce the computation time by leveraging
a GPU. The difference between the distance estimates
and LRF measurements was 0.16 and 0.14 m for patch
number 2 and 100, respectively, and both were small. In
addition, the difference in velocity was 0.3 and 0.1 m/s
for patch number 2 and 100, respectively. The difference
was significantly smaller when the number of patches
was 100. Similarly, for the acceleration, the higher the
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Fig. 11. Estimation results for different numbers of patches: 2
(light blue), 20 (green), and 100 (purple). Mean absolute error
(MAE) and computation time (CT) are shown.

number of patches, the longer the computation time,
with smaller differences with LRF measurements.

Fig. 12 shows a more detailed analysis of this relation-
ship. For distance estimation, increasing the number of
patches from 10 had minimum effect on the error. For ve-
locity and acceleration, the estimation error continued to
decrease until the number of patches was increased to 60.
These results show that there is a trade-off between the
computation time and estimation accuracy. The number
of patches can be tuned according to the computational
resources and required accuracy. Note that the proposed
method can further be accelerated with GPU.

VI. CONCLUSION
Herein, we proposed a method for estimating highly

accurate inter-vehicle distances using high-speed stereo
vision cameras. We used A-MOSSE, a visual tracking
algorithm optimized for high-speed stereo cameras, and
showed that it realizes stable and accurate tracking
even under severe vibrations. In addition, we proposed
multiple scale aggregation that refined distance estima-
tion without introducing delay through accurate scale
estimation in combination with a specially designed
method called patch multiplexing to perform stable ag-
gregation even in situations where the scale changes
rapidly. Through comparative analysis, we showed that
the accuracy of inter-vehicle distance estimation using
our approach is comparable to that of LRFs by evaluating
differential quantities such as velocity and acceleration
using an adaptive Kalman filter.

The velocity and acceleration estimated in this study
were relative quantities with respect to the ego-vehicle.
Future work directions include the estimation of absolute
velocity and acceleration by combining them with the
movement information of the ego-vehicle. This system
is thus capable of making advanced decisions on accel-
eration and braking according to the movement of the
preceding vehicle; therefore, it contributes to advanced
camera-based driver-assistance systems and autonomous
driving. We thus demonstrated the advantages of replac-
ing on-board stereo cameras with high-speed stereo cam-
eras, thereby potentially enabling the implementation of
stereo on-board high-speed vision.
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Fig. 12. Mean absolute error and computation time for different
number of patches (2, 4, 10, 20, 30, 40, 60, 80, and 100).
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