
High-Speed Recognition of Pedestrians out of Blind Spot
with Pre-detection of Potentially Dangerous Regions

Jiacheng Zhou1, Masahiro Hirano2 and Yuji Yamakawa3

Abstract— This paper presents a novel approach for the early
detection of pedestrians crossing out of blind spots. We used
a monocular camera mounted at the front of a vehicle and
developed an algorithm for detecting blind spots caused by
obstacles blocking the view of the driver, based on the depth
information obtained from a monocular depth estimation before
the vehicle approaches a potentially dangerous region. Unlike
other studies in which pedestrians were searched for over the
entire image, our blind spot pre-detection method allows for a
considerably smaller search area for pedestrian detection, which
can significantly reduce the time latency of detecting unexpected
pedestrians. We evaluated the proposed method on test videos
with complex pedestrian and street scenes. The experimental
results revealed that the performance of the method in detecting
blind spots and sudden appearance of pedestrians is good,
and the reaction latency for such emergency situations is
significantly reduced by applying the pre-detection method. Our
method can be applied in advanced driver-assistance systems
and reduce accident rate caused by sudden pedestrian crossing.

I. INTRODUCTION

Traffic safety has always been an important issue in peo-
ple’s daily lives. However, because of the popularity of smart
phones, numerous people tend to be immersed in the virtual
world even when they are walking on the streets, significantly
increasing the danger of being hit by approaching vehicles.
This would be even more dangerous if pedestrians, especially
children, suddenly ran out of blind spots, such as large buses
and walls around crossings. Owing to the slow reaction of
humans, drivers can rarely apply brakes or maneuver their
vehicles in time. Every millisecond is important considering
the high speed of a moving vehicle [10]. Computer vision
can help drivers detect pedestrians suddenly appearing out
of a blind spot at the earliest moment, as depicted by the
man in orange in Fig. 1.

Two main types of methods are available for pedestrian
detection in autonomous driving: traditional methods such
as handcrafted features combined with a sliding-window
framework and deep learning methods such as convolutional
neural networks (CNNs) [2]. Most methods for detecting
sudden pedestrian crossing (SPC) involve a pedestrian detec-
tor on the main part of the monocular image [3] or obtaining

*This work was not supported by any organization
1Jiacheng Zhou is with the Department of Mechanical Engineering,

School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-
ku, Tokyo 153-8505, Japan jiacheng@iis.u-tokyo.ac.jp

2Masahiro Hirano is with the Department of Mechanical and
Biofunctional Systems, Institute of Industrial Science, The Univer-
sity of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
mhirano@iis.u-tokyo.ac.jp

3Yuji Yamakawa is with Interfaculty Initiative in Information Studies, The
University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
y-ymkw@iis.u-tokyo.ac.jp

Fig. 1. Different regions in the same image. Image region can have sudden
pedestrians (orange), and region can be neglected (green)

stereo information by using additional devices such as depth
cameras, binocular cameras, and laser scanners [4]. However,
searching for unnecessary regions in an image can be time-
consuming and require additional costs.

In this paper, we introduce a method for dealing with the
SPC problem; it requires only a monocular camera and can
detect pedestrians suddenly appearing within a potentially
dangerous region. Our method can be divided into three
stages: blind spot pre-detection, sudden pedestrian detection,
and danger-level analysis. The first stage is implemented
when a vehicle approaches the potentially dangerous region.
To localize the obstacles that might block a driver’s view
along the two sides of a vehicle, we propose a depth-
gradient-feature-based algorithm that can detect the edge of
the obstacle through a rough pixel-wise depth map obtained
from the monocular depth estimation method. Applying this
pre-detection stage has two benefits. First, it enables faster
pedestrian detection at the target blind spot than conventional
methods, which require a full image analysis. The second
benefit is explained in combination with the second stage.

The second stage is pedestrian localization, where a deep-
learning-based method is used. However, fast deep-learning-
based object detection methods have limitations in detecting
small-sized or half-blocked people, especially when the
region of interest (ROI) is large and contains several objects
[1]. Therefore, we propose to restrict the searching area to a
region where pedestrians may suddenly appear and neglect
regions that can be clearly seen by the driver, such as the
green region in Fig. 1. Our blind spot pre-detection method
can well-serve this purpose.

The third stage is motion detection and danger analysis.
We first calculate the average translation of the detected
pedestrian through optical flow. We then analyze whether
the pedestrian is at a risk of being hit by the vehicle.

The main contribution of our study is that we propose a
new method that can help vehicles quickly respond to sudden



pedestrian appearances out of blind spots. The proposed
algorithm can detect the edges of obstacles blocking the view
of a driver using only rough depth information obtained from
monocular depth estimation, which can significantly reduce
the reaction time. Experiments are conducted to examine the
performance of our blind spot pre-detection method in terms
of the reaction time and compare it with that of the direct
application of the pedestrian detection method.

II. RELATED WORK

At present, researchers are paying considerable attention
to pedestrian detection. However, despite its significance,
the SPC problem has been investigated in very few studies.
In one of the earliest studies on this problem, Xu et al.
[3] proposed a three-level coarse-to-fine framework based
on sliding windows that could detect pedestrians suddenly
appearing at the edge of an image. To reduce the pedestrian
detection region and boost reaction speed, they combined
a sparse sliding window with a motion filter based on
a local binary pattern to select windows with significant
motion at the local level. Although this motion filter cuts
the processing region, it still regards all moving pedestrians
equally. We consider the environmental information and
employ computing resources on only the blind spot regions.
Hence, our method requires a less amount of computations
for pedestrian detection and danger level analysis.

The concept of detecting a potentially dangerous region in
advance was proposed by Broggi et al. [4], whose approach
only searches for pedestrians in areas where obstacles can
block the view of a driver. However, they used a laser
scanner to reconstruct the environment and find the blind
spots. This can significantly increase the implementation and
maintenance costs. Additional work on sensor fusion is also
necessary in this regard. Moreover, they needed a few laser
scanner rotations for corrections to achieve a higher depth
accuracy, thereby limiting the processing speed. Our method
enables the usage of a relatively low-cost monocular camera
instead of laser scanners. Moreover, the reaction speed of the
proposed method can be higher.

Jeong et al. [5] also studied the SPC problem by mounting
a far-infrared camera on top of a vehicle and using the
temperature for area segmentation and a reference line to
reduce the detection region. Then, they combined a cascade
random forest with low-dimensional Haar-like features and
oriented center-symmetric local binary patterns to detect
multiple pedestrians. However, the pedestrian searching area
accounted for more than half of the entire image and con-
sidered pedestrians in front of the vehicle. By contrast, our
blind spot pre-detection method works harmonically with the
current system for the SPC problem and restricts the ROI to
a substantially smaller size.

III. SUDDEN PEDESTRIAN DETECTION OUT OF BLIND
SPOTS

Our method is illustrated by the flowchart in Fig. 2. The
first stage is blind spot detection, which involves depth esti-
mation and obstacle edge detection. Obstacle edge detection

involves two modes: depth estimation mode (DEM) and
blind spot prediction mode (BSPM), which are discussed in
detail in subsequent sections. The second stage is pedestrian
detection, in which pedestrian detectors such as YOLO
are applied within the cropped blind spot region. If any
pedestrian is detected, the third stage of motion detection
and danger level analysis is applied, and the pedestrian’s
velocity is calculated through optical flow.

Fig. 2. Flowchart of the method

A. Blind Spot Detection

The first stage of our method is used to detect obstacles
(such as walls and buses) that block a driver’s view alongside
a vehicle. The corresponding region, which can have the
sudden appearance of a pedestrian, is then defined as a
rectangle area next to the edge of the obstacle. This stage is
divided into two modes based on different times: DEM and
BSPM. When the edge of the obstacle is far away from the
vehicle, the DEM is implemented to search for the potential
edge of the obstacle in a relatively time-costly manner. When
the edge is detected and the vehicle comes in close proximity
to the potentially dangerous region, the DEM is stopped and
the BSPM is started to predict the edge position according
to speed of the vehicle; this has negligible time cost. Our
method is used to avoid collisions with suddenly appearing
pedestrians. Therefore, detecting pedestrians coming out of a
blind spot when the vehicle is still far away from potentially
dangerous region is unnecessary. Thus, only the suddenly
appearing pedestrians detected in the BSPM need further at-
tention. In the DEM, we first use monocular depth estimation
to estimate the pixel-wise depth map of the current frame and
then develop an algorithm for identifying any sudden depth
decrease to locate the edges of obstacles.

1) Monocular Depth Estimation: For depth estimation,
we use Monodepth2 proposed by Godard et al. [6]. They
applied self-supervised learning and can train on monocular
sequential images to obtain an inference model for estimating
pixel-wise depth information from a single image. The
performance is comparable to that of a supervised learning
model. The inference output is a pixel-wise matrix of the
reciprocal of the normalized depth value.

In this study, we train our Monodepth2 model based on
the KITTI dataset [8]. As the amount of data on pedestrians
walking out of blind spots is limited, we split the dataset
and include images with more pedestrians and obstacles into



Fig. 3. An example of Monodepth2 inference and detected blind spot

the test set for the evaluation. Fig. 3 displays a depth image
example by Monodepth2. The first image is the input and
the second one is the depth map output.

2) Blind Spot Detection using Depth Maps: In this study,
obstacles are defined as objects that are big enough to block
a driver’s view alongside the vehicle, as depicted by the van
on the left side in Fig. 3. The white box is detected as a
blind spot region in the DEM and excludes most parts of the
image, thus significantly boosting the reaction speed.

We develop an algorithm to find the edge of the obstacle
based on depth maps. For illustration, the following algo-
rithm considers only the left part of the image. When a
vehicle is moving and the edge of the obstacle is not yet
detected, the DEM is applied on each frame. When the edge
of any obstacle is detected, the blind spot is defined as a
white box in Fig. 3. Then, if blind spots are detected through
the DEM within more than two sequential frames or the
distance between the vehicle and the obstacle reaches the
threshold value, in the following few frames, the DEM is
stopped and the BSPM is started to predict the blind spot
location, which is displayed as a red box in Fig. 5. Details of
the DEM and BSPM are discussed in the following sections.

DEM: Three steps are performed in the DEM to find an
obstacle edge. The first step is checking the depth gradient
along the road direction and finding the sudden depth drop
position. As the red line in Fig. 4 shows, we select an inclined
line segment starting from (0, 3/4H) to (3/10W, 3/5H) as
the initial reference line, which has approximately the same
direction as the road. The gradient features of equally divided
points every five pixels on the reference line are checked to
find the sudden depth drop position. For example, the depth
vector along the reference line can be denoted as:

dv = [d1, d2, · · · , dn]

Each di represents the depth information of the pixel selected
from the reference line. Then, the depth gradient vector is
calculated as:

dgv =

[
d2 − d1

5
, · · · , dn − dn−1

5

]
The peak value within the depth gradient vector is selected,
and the sudden drop point on the reference line can be

obtained by using the indices of the peak values; the sudden
drop point is denoted as the red point in Fig. 4. Its x
coordinate is denoted as x0, and the y coordinate, y0, can
be calculated using the linear relation of the reference line.

The second step is checking the depth to determine
whether an obstacle big and close enough to the vehicle
exists at the drop point. A rectangular box is selected to the
left of the drop point, as shown in blue in Fig. 4. Pixels are
sparsely picked within the box, and their depths are checked.
If more than 90% of the selected pixels within the box have
a depth smaller than the threshold, the depth check is passed
and an obstacle that can block the view of the driver is
considered to exist. This blue box determines the smallest
size of an obstacle that can block the view of the driver; the
size can be modified depending on different camera settings.
We use 100× 80 pixels for the KITTI dataset [8].

When the second step is passed, the third step ensures
that an obstacle edge exists at this position rather than a
random depth drop along the reference line. In this step, other
horizontal line segments are selected, and gradient checks
are applied to each of them, as shown by the four horizontal
dark blue line segments in Fig. 4. The drop points on these
four line segments are represented by green, and their x
coordinates are denoted as x1, x2, x3, and x4. If more than
two drop points exist, their values are placed into set S and
the final x coordinate of the sudden depth drop is calculated
by applying the following equation:

xd =
1

n

n∑
i=1

(xi)

xi is an element in S and n is the size of S. If no other drop
points are detected, we consider that no obstacle edge exists
close enough to the vehicle and skip this frame.

After the average position of the detected drop points is
obtained, the blind spot region is determined as a 192 ×
160 white rectangle with the top left point as (xd − 20, yt)
(shown in Fig. 4), where yt is based on the image size and
camera location. This size is chosen because the YOLOv5
[7] inference model allows sizes that are divisible by only
32. The relatively larger width with respect to pedestrians is
designed to compensate for drop point detection errors.

Fig. 4. Blind spot detection algorithm

BSPM: The BSPM is applied immediately after the DEM
and is considerably faster. If any blind spot is detected in
more than two consecutive frames or the latest position of
the blind spot is sufficiently close to the image edge, the



vehicle is considered to be approaching the place where
SPC may occur. In this case, the DEM is ended and the
BSPM is started. In the BSPM, the position tracking of a
blind spot region is designed to be based on the vehicle
speed and the camera parameters. However, in our cases,
because real-time velocity information cannot be obtained
from the KITTI dataset [8], we use the highest speed in
the previously detected blind spot from the DEM, which is
the largest pixel translation per frame of the white box in
the x direction, as the speed of the blind spot in the BSPM.
The blind spot location can be predicted with negligible time
cost without applying Monodepth2 inference and the depth-
gradient-feature-based algorithm. The BSPM and DEM can
be combined to rapidly identify the blind spot region as the
vehicle approaches a potentially dangerous location.

B. Pedestrian Detection

After the blind spot region is detected, the pedestrian
detection method is applied to it. We apply YOLOv5 [7],
which is an open-source object detection architecture that can
rapidly and accurately detect objects, including pedestrians.
Moreover, YOLOv5 [7] is considered to be more efficient
and faster than sliding window methods, such as the method
used by Xu et al. [3]. As the inference speed and accuracy of
the YOLOv5 model are sensitive to the input image, the time
needed for pedestrian detection in the blind spot region is
much less than that for the entire image. Pedestrian detection
examples where YOLOv5 [7] is applied to the predicted
blind spots are shown in Fig. 5. The pedestrian is accurately
detected and bound within the green/red box. The details
of time consumption and a comparison are provided in the
subsequent sections.

C. Motion Detection and Danger Level Analysis

The third stage is employed to analyze the motion of the
detected pedestrian within the blind spot. If the pedestrian is
moving toward the vehicle at above a certain speed or becom-
ing extremely close, they will be detected as “dangerous.” To
determine the speed of the detected pedestrian along the x
direction, optical flow [11] is applied between two sequential
frames. If a high-speed monocular camera is used, time
latency can be reduced significantly. Optical flow functions
when a pedestrian is detected. Corner points are selected
within the green box region of the first frame. Then, in the
next frame, the nearby region of the previous pedestrian is
checked using the Lucas–Kanade (LK)-based optical flow
[11] to find the corresponding corner points. The average
pixel translation of the pedestrian within the two frames can
then be obtained, based on which the average velocity can be
calculated by applying the following equation, where xt is
the average pixel translation (pixel) along the x direction and
t is the time interval (second) between continuous frames.

v = xt/t

If the pedestrian moves toward the center of the image
and the average velocity exceeds the threshold, the vehicle
should perform a collision avoidance maneuver. Fig. 5 shows

examples of motion detection. The small red box indicates
that a pedestrian is detected as walking toward the potentially
dangerous area and is in risk of being hit by the vehicle. The
green box indicates that the pedestrian is walking away from
the vehicle; therefore, the vehicle does not need to apply
brakes.

Fig. 5. Examples of pedestrian detection and danger level analysis

IV. EVALUATION

A. Evaluation Setup

We used a computer with the following configuration:
Intel® Core™ i7-6950X CPU @ 3.00 GHz × 20 and
TITAN X (Pascal)/PCIe/SSE2 GPU. The data used to train
the Monodepth2 model and for test purposes were acquired
from the monocular image parts of the KITTI2011 dataset
[8] and included many different situations, such as urban
areas and highways. The monocular camera was mounted
on top of the vehicle, and the frame rate was 10 fps. For
pedestrian detection, we used the YOLOv5s model pretrained
on the COCO dataset [9] as the inference model. To increase
the processing speed to the maximum, we applied TensorRT
[12] to the YOLOv5 network. TensorRT is a software devel-
opment kit created by NVIDIA for high-performance deep
learning inferences. Finally, in all the tests of the proposed
method, only the left part of the image was considered.
Therefore, the overall reaction times for pedestrian detection
and motion detection should be doubled if both sides are to
be detected.

B. Evaluation Criteria

In Fig. 6, when the pedestrian appears in the first frame
and is detected in the second frame, her translation is
calculated through optical flow in the third frame. Our time
latency for detecting the pedestrian can be calculated as
t = t1 + t2 + t3 + t4. Here, t1 is the time for blind spot
detection. This stage is in either the DEM or the BSPM based
on different times. As our aim is to evaluate the time latency
under emergency situations, when the DEM is stopped and
the BSPM is employed, t1 is the time cost of the BSPM,
which is negligible and regarded as zero.

The second term, t2, represents time from the pedestrian
appears to the pedestrian is detected. In this study, the



interval for each frame is 100 ms. Thus, t2 is calculated
as t2 = n · 100 ms, where n is the number of frames needed
to successfully detect the sudden pedestrian appearing from
behind an obstacle.

The third term, t3, represents the larger one between frame
interval and td+tc, where td is the time for pedestrian detec-
tion and tc is time for corners selection among the detected
pedestrian image region in the same frame. However, since
time interval for KITTI dataset [8] (100ms) is much larger
and totally cover td + tc, t3 is 100ms. td highly depends on
the detection region. We also show td based on YOLOv5 [7]
with TensorRT over images of different sizes.

The fourth term, t4, is the time consumption for detecting
corners’ corresponding points in the next frame. The sum
of tc and t4 is the total time consumption of LK optical
flow. To illustrate that the proposed blind spot pre-detection
method helps increase the reaction speed, we compare the
time latency of methods with and without pre-detection.

C. Results

1) Time Consumption of Each Part: After the test on the
KITTI dataset [8], the average values of td are obtained for
the YOLOv5s inference model of different input sizes, as
shown in Table. 1. The time for pedestrian detection increases
as the detection region becomes larger. The input size of
the YOLOv5 model is chosen because the image size of the
KITTI dataset [8] in this study is 375×1242 (height×width)
and the size of the cropped blind spot region is 192×160. If
the width and height are divisible by 32, YOLOv5 will not
apply image resizing and, thus, save time. For optical flow
part, tc and t4 has an average value of 3.913 ms and 1.785
ms. n in t2 is 1 for KITTI dataset [8]. Also, the average time
consumption for the DEM is 56.785 ms per frame; however,
the DEM only functions before the vehicle approaches, and
thus, the DEM part need not be included in the emergency
time latency.

TABLE I
AVERAGE TIME CONSUMPTION OF DIFFERENT YOLOV5S MODEL SIZES

Input size for YOLO Inference time (t2)
YOLOv5s 192× 160 4.053 ms
YOLOv5s 352× 352 6.139 ms

YOLOv5s 352× 1216 10.196 ms

2) Comparison of Latencies with and without Blind Spot
Pre-detection: To demonstrate the benefits of the proposed
blind spot pre-detection method, we compare the method
with the direct application of YOLOv5 to the entire image.
Three frames in Fig. 6(a) present one of the test results. The
pedestrian within the blind spot (large red box) is detected
in the second frame (green box), even if she is partially
blocked. Then, her motion is calculated based on the second
and third frames through optical flow. As the motion is
toward the image center, she is considered as “dangerous.”
Consequently, the green pedestrian box becomes red to
denote “alert.” Fig. 6(b) shows the direct application of
YOLO (352 × 1216) to the entire image; this misses the

pedestrian in the second frame and works only after the
pedestrian completely appears in the third frame.

The results indicate that the proposed pre-detection
method can help detect an unexpected pedestrian at an earlier
stage with a lower time latency. In this case, the time latency
for sudden pedestrian detection is reduced by 100 ms, which
is one frame time interval. The latency decrease is significant
because the frame rate of this dataset is small. However, if a
high-speed camera more than 100fps is used, t3 part will be
replaced by td + tc and the reaction latency is also reduced
by applying smaller YOLOv5 inference image as shown in
Table. 1 thanks to the blind spot pre-detection method.

Actually, t2 is not meaningful for evaluation since the
very first frame where pedestrian appears can also be defined
when he/she half appear, such as the second frame in Fig. 6.
Hence, counting from the second frame, the overall reaction
time for this case can be calculated by applying the following
equation

t = t3 + t4 = 100 + 1.785 = 101.785ms

In this case, the reaction latency is relatively large, limited
by small frame rate of KITTI dataset [8]. However, if a
camera with a higher frame rate is used, the proposed method
is expected to perform better in real-time applications for
assisting drivers in emergency situations. If 500 fps data is
used, as our future work, total time latency can be reduced to
less than 10 ms. Also, the speed for the optical flow part can
also be increased according to the result obtained by Xu et
al. [3]. Furthermore, other cases show that the proposed blind
spot pre-detection method can help to significantly reduce the
reaction latency for pedestrians detected at an earlier frame.
Further evaluations based on self-collected data will be done.

However, the proposed method may fail on some occa-
sions. In the first stage of blind spot detection, monocular
depth estimation can fail for some distorted, reflective, and
color-saturated regions [6]. In this case, some negative cases
of blind spots can be detected as positive. For the second
stage, pedestrian detection performance is limited by the per-
formance of the YOLO model. Using different models such
as “nano,” “s,” “m,” and “l” will impact the accuracy/latency
balance. In the test cases in this study, because of blind spot
pre-detection, YOLOv5s detected pedestrians well with no
failure cases.

V. CONCLUSION

We proposed a new method to help drivers react more
quickly when a pedestrian suddenly appears out of a blind
spot by pre-checking potentially dangerous regions. The
KITTI dataset [8] was used to test the method, and the
experimental results showed that the method is suitable for
real-time applications. Even in complex test situations, such
as the urban view in Fig. 6(a), the proposed method performs
well with a short reaction time. The results also showed that
blind-spot pre-detection can help detect sudden pedestrians
at an earlier stage than when directly applying pedestrian
detection on the entire image. The proposed pre-detection



Fig. 6. (a). Test results using blind spot pre-detection method (left). (b). Test results by directly applying YOLO to entire images (right)

method will be beneficial to any type of pedestrian detection
methods because of the smaller inference image sizes.

However, this study has some limitations. First, this study
is based on the assumption that the vehicle and the obstacle
have constant speeds in the BSPM. The vehicle part can
be solved by obtaining the real-time vehicle velocity from
controller area network or other sensors. However, for the
obstacle part, the obstacle can be, for example, a bus moving
towards our vehicle, and the speed may change during the
BSPM. In this situation, we can start the BSPM later and
assume that the speed of the obstacle is constant in the
previous few frames, making a prediction failure less likely.
Second, this study involved the use of the KITTI dataset
[8], whose image frequency is 10 fps. Hence, most of the
reaction time was wasted because of this low frequency.
Using a monocular camera with a higher frequency will
enable the proposed method to have a much smaller latency.
Additionally, as the KITTI dataset [8] lacks situations of
SPC, appropriate evaluation of the reliability of the proposed
method is not feasible owing to such a small number of test
scenarios. We will conduct further evaluations by using the
road data we collect. However, the effectiveness of our blind
spot pre-detection method in boosting the reaction speed in
SPC problems is already revealed in this study.

In future work, we will collect our own road data for
more emergency situations using high-speed cameras. We
can train the Monodepth2 model based on the data collected
and evaluate the performance, including accuracy and reac-
tion latency, of the proposed method by using high-speed
cameras. Furthermore, the latency from a low camera frame
rate, which is the primary latency in the current study, can be
reduced significantly. Real-time vehicle speeds will also be
applied to the BSPM so that the obstacle edge can be tracked
more precisely. This study will also be expanded to detect
the sudden appearances of cars and people riding bikes out of
blind spots, which necessitate faster reaction times. Finally,
we will also consider different driver maneuvers to avoid
collisions in different situations.

REFERENCES

[1] Z. Yang, J. Li and H. Li, “Real-time pedestrian and vehicle detection
for autonomous driving,” 2018 IEEE Intelligent Vehicles Symposium
(IV), IEEE, 2018, pp. 179–184. doi: 10.1109/IVS.2018.8500642.

[2] L. Chen et al., “Deep neural network based vehicle and pedestrian
detection for autonomous driving: a survey,” IEEE Transactions on
Intelligent Transportation Systems, vol. 22, no. 6, IEEE, June, 2021,
pp. 3234–3246. doi: 10.1109/TITS.2020.2993926.

[3] Y. Xu, D. Xu, S. Lin, T. X. Han, X. Cao and X. Li, “De-
tection of sudden pedestrian crossings for driving assistance sys-
tems,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), vol. 42, no. 3, IEEE, 2012, pp. 729–739. doi:
10.1109/TSMCB.2011.2175726.

[4] A. Broggi, P. Cerri, S. Ghidoni, P. Grisleri and H. G. Jung, “A new
approach to urban pedestrian detection for automatic braking,” IEEE
Transactions on Intelligent Transportation Systems, vol. 10, no. 4,
IEEE, Dec, 2009, pp. 594–605. doi: 10.1109/TITS.2009.2032770.

[5] M. Jeong, B. C. Ko and J. Nam, “Early detection of sudden pedestrian
crossing for safe driving during summer nights,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 27, no. 6, IEEE,
June, 2017, pp. 1368–1380. doi: 10.1109/TCSVT.2016.2539684.

[6] C. Godard, O. M. Aodha, M. Firman and G. J. Brostow, “Digging into
self-supervised monocular depth estimation,” Proceeding of the 2019
IEEE/CVF International Conference on Computer Vision (ICCV),
IEEE, 2019, pp. 3828–3838.

[7] G. Jocher et al., “ultralytics/yolov5: v3.1 - Bug Fixes and Performance
Improvements,” Zenodo, Oct, 2020. doi:10.5281/zenodo.4154370.

[8] A. Geiger, P. Lenz, C. Stiller and R. Urtasun, “Vision meets
robotics: The KITTI dataset,” The International Journal of
Robotics Research, vol. 32, no. 11, Sept, 2013, pp. 1231–37.
doi:10.1177/0278364913491297

[9] T. Lin et al., “Microsoft COCO: Common Objects in Context,”
Computer Vision – ECCV 2014, Springer International Publishing,
2014, pp. 740–755. doi: 10.1007/978-3-319-10602-1 48.

[10] M. Rezaei, M. Terauchi and R. Klette, “Robust vehicle detection
and distance estimation under challenging lighting conditions,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 5,
IEEE, Oct, 2015, pp. 2723–2743. doi: 10.1109/TITS.2015.2421482.

[11] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” Proceedings of the 7th Interna-
tional Joint Conference on Artificial Intelligence, vol. 2, no. 6, San
Francisco: Morgan Kaufmann Publishers Inc., 1981, pp. 674–679.

[12] NVIDIA TensorRT, Mar. 2021, [online] Available:
https://developer.nvidia.com/tensorrt/.


